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Abstract
● Program induction is an appealing model for human concept learning, but faces 

scaling challenges in searching the massive space of programs.

● We propose a computational model capturing two key aspects of human concept 
learning:

○ Our ability to judge how promising a vague, partial hypothesis is

○ Our ability to ability to gradually refine these coarse explanations of observations 
to precise ones.

● We represent hypotheses as probabilistic programs with randomness in place of 
unresolved programmatic structure. We guide a search process whereby 
high-entropy, coarse programs are iteratively refined to introduce deterministic 
structure.

● Preliminary synthesis results show improvements in sample efficiency through our 
approach, and a preliminary human study explores how model intermediate 
hypotheses compare to those of participants.
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λxs. map (λx. if Flip(0.5) then RandDigit() else inc(x)) xs

λxs. map (λx. if even(x) then dec(x) else inc(x)) xs

λxs. map (λx. RandDigit()) xs

The likelihood of the examples 
under the program is a measure 

of hypothesis quality

refine

refine

Input and output are the same 
length, maybe some rule applies 

to each element?

Oh, some of the outputs are 
incremented…

And all the others are 
decremented…

Ah! Evens are decremented 
and odds are incremented 

Input       Output

[3,2,7,6] → [4,1,8,5]

[1,8,6,5,7] → [2,7,5,6,8]
λxs. RandList()
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SMC Search: Pruning & Guiding
How do we evaluate how good a 

“coarse” hypothesis is?

Sequential Monte Carlo (SMC)

Pilot Design

P=5·10-13

P=2·10-12P=1·10-9P=0
λxs. map (λx. RandDigit()) xs)

λxs. RandList()

λxs. filter (λx. Flip(0.5)) xs λxs. cons RandDigit() RandList()

Higher likelihood:
More promising

Lower likelihood:  
Less promising

(λxs. map (λx. (RandDigit)) xs)
[4,1,8,5] P=10-4xs = [3,2,7,6]

[2,7,5,6,8] P=10-5xs = [1,8,6,5,7]

RandList if (Flip 0.5) then [] else (Cons (RandDigit) RandList)=Zero likelihood:
impossible (can prune)

λxs. map (λx. if flip(0.5) then randomDigit() else inc(x)) xs
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λxs. RandList()

λxs. map (λx. RandDigit()) xs

λxs. filter (λx. Flip(0.5)) xs

λxs. cons RandDigit() RandList()

X

P=1·10-9

P=2·10-12

P=0

… …

Preliminary Computational Results

Step 1: Participant has a limited 
amount of time to observe 
input-output examples.

Step 2: Participant records 
observations they’ve noticed, 
regardless of whether they figured out 
the rule.

Step 3: Participant tries to guess the 
outputs. If they are correct, they 
move to the next round (with a new 
rule). Otherwise they return to Step 1 
with more time and the same rule. 
Time limits: 4s, 8s, 16s, 32s, 64s, ∞.

Results:
● N=15 pilot

EXPT DESIGN
How do people refine their guesses with increasingly long intervals of time ot think about the 
observations

Inputs -> outputs
True rule: first element is the index into the output

                            Person 1         Person 2
4 seconds            “i don't know”
8 seconds           “some numbers”
16
32
64   aha!

Show variation in how long people have

Future work -- what more can we explore? Sometimes these hypotheses are wrong but close! 

Input       Output

[3,2,7,6] → [?,?,?,?]

[1,8,6,5,7] → [?,?,?,?,?]

Input       Output

[3,2,7,6] → [4,?,8,?]

[1,8,6,5,7] → [2,?,?,?,?]

English explanation 
of what program is 
doing -- small italics
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How do we refine our initial
“coarse” hypotheses into 
increasingly precise ones?

We model “coarse” hypotheses as probabilistic programs,
which are refined to gradually introduce deterministic structure

Task: What is the rule that 
transforms the input lists 

to output lists?
A list with geometrically distributed length 
containing random digits

A map over the input list, sampling a 
random digit for each element

A map over the input list, flipping a coin to 
decide whether to sample a random digit or 
increment the element

A map over the input list, flipping a coin to 
decide whether to decrement or increment the 
element

A map over the input list, decrementing evens 
and incrementing odds

P = 5·10-13

P = 1·10-9

P = 6·10-4

P = 2·10-3

P = 1.0

…

… … … … …

Likelihood of examples
under hypothesis

Future Work

Coarse 
hypothesis

Precise 
hypothesis

This filter can only produce 
subsets of the input list so it has 
likelihood zero of producing the 
output

Search details. We perform a sequential monte carlo (SMC) search over the space of 
probabilistic programs. At each step, we refine a hypothesis by replacing some 
stochastic leaf node with a depth 1 node sampled from PCFG grammar.

Why can we prune likelihood-zero programs? If a probabilistic program can never 
produce the observed outputs, refining randomness into determinism in it will never 
result in a program that can produce the outputs. 

Why is a high likelihood program promising? A probabilistic program is an 
explanation of how the data came to be. High likelihood programs have already 
explained much of the data through their deterministic structure, minimizing the 
amount that is explained as random chance.

Why P=10-9?
This program explains 
each of the 9 output 
digits as being a random 
digit. A random digit has 
1/10 chance to be the 
observed value. 

Why P=2·10-3?
This program flips a coin 
9 times to produce the 
output digits. A flip has 
1/2 chance to result in 
the observed value.
P= 2-9 = 2·10-3

Refinements

Pilot Results

● Dataset: First 80 tasks from list manipulation dataset of [Rule 2020; Rule et al 2024]
● SMC: 300 particles for 12 steps; MCMC: 7000 steps (similar amount of time)
● SMC moves: expand a random leaf to a depth one expression.
● MCMC moves: resample random subtree, similar to [Goodman et al. 2008]
● SMC outperforms MCMC, and in particular the probabilistic DSL benefits SMC greatly over using a 

deterministic DSL that just has add-remove-modify noise on the output list.
● Working in a high level DSL (with map, filter, etc) is important to coarse-to-fine SMC working well

Human Study
● There’s a lot that people don’t write down – what can we do to better probe people’s 

intermediate hypotheses?
● Can we model the effect of people attending to only a few examples when proposing?
● More participants, and longer time limits
● Quantitative analysis of relationship between our model and the human data

Computational Modelling
● Richer MCMC & SMC moves, including the MCMC moves from [Saad et al. 2023]
● Library learning to bootstrap from a low-level DSL as in [Ellis et al 2021, Bowers et al 2023]
● Add domain: formal grammars from [Yang & Piantadosi 2022] where they similarly explore 

probabilistic program hypotheses through MCMC, but also have edit-noise on the list outputs.
● Add domain: world modelling domain like Autumn [Das et al 2023] or VGDL

● N=15 pilot
● Question: how do people refine their guesses when given increasingly long intervals of time to look at 

the examples?
● Some coarse-to-fine reasoning 
● Challenge: Attention effects – people often seem to hypothesize based on one or a few examples before 

trying the hypothesis on all the data
● Challenge: People tend to say fine grained hypotheses they were going to try to verify next when they 

got cut off, as opposed to saying coarse patterns that they’re sure of

SMC MCMC
SMC MCMC

1. SMC outperforms MCMC 2. Probabilistic DSL (full model) outperforms
     deterministic DSL with noise on the output

3. High-level DSL is particularly important 
to SMC performance

Task: Return the 3rd element of the list

People often do this in a single step while our model model’s 
trajectory:
1. RandList()                             # a random list
2. (cons RandDigit() [])             # a random 1-element list
3. (cons (index RandDigit() xs) []) # index randomly into the list
4. (cons (index 3 xs) [])                # 3rd element of the list

Person 1

Person 2

Person 3

Task: Increment odds and decrement evens Task: Use the first number in the list to index into the list

Task: Append length of list on to end of list

N=15 pilot to explore how people refine their guesses over time; some tasks adapted from [Rule 2020]. 
Example tasks and responses are given below.

Some challenges and observations:
● It’s hard to get people to write down everything they notice.
● People often hypothesize based on one or a few examples, and share 

these incorrect hypotheses rather than writing down the features 
they’re sure of.

2/5 people got this correct, and 2 others ended with noticing 
that numbers were getting incremented/decremented but 
were unsure why, as in the example below.

3/3 people got this correct, all within 16 seconds; if there is 
coarse to fine reasoning it’s happening very fast

Our model’s trajectory:
1. RandList()                                 # a random list
2. (cons RandDigit() [])                 # a random 1-element list
3. (cons (index RandDigit() xs) []) # index randomly into the list
4. (cons (index 3 xs) [])                # 3rd element of the list

1/4 people got this correct, making it much harder than Return 
3rd element of list, though our model takes a similar trajectory 
to the other task.

Task: Remove 1, 3, 6, and 8 from the list

5/7 people got this correct, and 1 other person noticed “some 
numbers are being removed”. People write many incorrect 
observations along the way. 

Person 1

Person 2

3/4 people got this correct, and 3/4 started by hypothesizing 
that something is appended to the list, as does our model.


