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How do we refine our initial
“coarse” hypotheses into
increasingly precise ones?

We model “coarse” hypotheses as probabilistic programs,
which are refined to gradually introduce deterministic structure
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- refine S~
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q ted.. Axs. map (Ax. if Flip(0.5) then dec(x) else inc(x)) xs decide whether to decrement or increment the ... P=2-1 0-3 ------- output digits. A jlip has
ecremented... element . 1/2 chance to result in
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: refine | P=27=2-10"
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Precise Ah! Evens are decremented A Ax. if th d Ise i A map over the input list, decrementing evens
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SMC Search: Pruning & Guiding Pilot Design
Step 1: Participant has a limited Step 2: Participant records Step 3: Participant tries to guess the
o amount of time to observe observations they’ve noticed, outputs. If they are correct, they
: T J— Likelihood of examples input-output examples. regardless of whether they figured out move to the next round (with a new
Axs. RandList() P=5-10 < under hypothesis the rule. rule). Otherwise they return to Step 1
with more time and the same rule.
Time limits: 4s, 8s, 16s, 32s, 64s, .
Refinements
Round 2/3 (Attempt 1/6) Round 2/3 (Attempt 1/6) Round 2/3 (Attempt 1/6)
Guess the rule! Patterns you noticed: Patterns you noticed:
S e v ™*1%° ™ Theinput and outaut s ae the same length
_ The input and output lists are the same length Predict the f’”tp“tS!
/ P=0 J P=1-10 ’ [3726]1-[4815] AT A% 56790, WOrTS I 180 11 GRURGISSS SV8R R GApaaH
’ . - . . [ 3 8 ] . [ 4 7 ] @ to be correct
Axs. filter (Ax. Flip(0.5)) xs Axs. map (Ax. RandDigit()) xs) Axs. cons RandDigit() RandList() [3761-1 ]
(1865710275681
[2561 11651 t174851-1 ]
Zero likelihood: i h222l«133 411 et |
impossible (can prune) [ 1 know the rule! |
This filter can only produce P . l t R lt
subsets of the input list so it has . . . ] 0 eS u S
likelihood zero of producing the H1gher likelihood:
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More promising N=15 pilot to explore how people refine their guesses over time; some tasks adapted from [Rule 2020].
Example tasks and responses are given below.
Search details. We perform a sequential monte carlo (SMC) search over the space of
probabilistic programs. At each step, we refine a hypothesis by replacing some Task: Increment odds and decrement evens VS 152 (G0 [ e o Gie WS 9 (e e e st
- : 2/5 people got this correct, and 2 others ended with noticing . o
stochastic leaf node with a depth 1 node sampled from PCFG grammar. ot mmbers were gotting incremented /decremented but 174 people got this correct, making it much harder than Return
were unsure why, as in the example below. 3rd element of list, though our model takes a similar trajectory
o g e | to the other task.
Why can we prune likelihood-zero programs? If a probabilistic program can never 5,7,2,61» [4,8,1,5]  *Ltondthesecond et ofmahers e compieely 0 Hhe OTher tas
produce the observed outputs, refining randomness into determinism in it will never [1,8,6.5.71 = [2,7,5,6, 8] * Some o tbenumbers e one aumber ower ad ons Task: Append length of list on to end of list
result -in a ro ram that Can roduce the Out utS. [2,5,6]%[1,6,5] -Itseemsl@ke some numbers arelowerbutIcan‘ttell.(16s)
pros P P 4.2,2,21~ 13, 1 1 1] ) {f,jf;nl(sg,lzlf)e some numbers have the same sequence but are 3/4 people got this correct, and 3/4 started by hypothesizing
o . » I think every other number is subtracted or added. (64s) that something is appended to the list, as does our model.
Why is a high likelihood program promising? A probabilistic program is an it e k. s A3
explanation of how the data came to be. High likelihood programs have already Task: Remove 1, 3, 6, and 8 from the list
explained much of the data through their deterministic structure, minimizing the Task: Return the 3rd element of the list
. . . o . , 5/7 people got this correct, and 1 other person noticed “some
amount that is explained as random chance. 3/3 people got this correct, all within 16 seconds; if there is humbers are being removed”. People write many incorrect
coarse to fine reasoning it’s happening very fast observations along the way.
[5,6,1,3,2] = [1] « A number in the middle is selected (4s / 19s) Person 1
S : : [6,7,8,1] = [8] " Mlayve \évher?l);he ratiem chaygesthe number 1§ phosern &3 [0,4,6,7,8,9]1 = [0,4,7,9] « It looked like at first glance that the last two numbers of the
reliminary Computational Results
[1,9,9,5,5] — [9] o LS SR e on sy [5,5,9,9,2,2,11 = [5,5,9,9,2,2] « I think that some of the odds may have an effect on the
[0,4,1] — [1] [1,3,6,8] =[] output, but it's hard to say for certain. (8s)
> [1,6,9,3] — [9] o The pattern may be that certain pumbers don't go into the
e Dataset: First 80 tasks from list manipulation dataset of [Rule 2020; Rule et al 2024] Our model’s trajectory: oo it vom e, el T
. : . . P : 1. RandList() # a random list e Numbers 1, 3, 6, and 8 do not carry over into the output, but
° gmg 300 p?rtlcles C1|‘or 12 Csltepsl, MfcﬁAC. ZOO(Ehsteps (Slmllal’. amount of time) 2. (cons RandDigit() [1) i 0 random 1-element [ist alllsfhen Tttt (E35)
¢ MOVES. €xpand a random (€at Lo a eP . one €xpression. 3. (cons (index RandDigit() xs) []) # index randomly into the list Person 2
e MCMC moves: I’esample random SUbtree, similar to [GOOdman et al. 2008] 4, (cons (index 3 xs)[]) # 3rd element of the list « I think maybe the even numbers were removed? (4s / 25s)
e SMC outperforms MCMC, and in particular the probabilistic DSL benefits SMC greatly over using a :i'ﬁiﬂkretltygfg S‘éffeﬁifefm?féfi gss )/ 2O
deterministic DSL that just has add-remove-modify noise on the output list. « Sometimes the 6's werer.emo.\./.ed but sometimes they were
e Working in a high level DSL (with map, filter, etc) is important to coarse-to-fine SMC working well Some challenges and observations: s st S ol e
) 1 1 1 removed too. I can't figure it out yet... (32s / 53s)
2. Probabilistic DSL (full model) outperforms 3. High-level DSL is particularly important * It's hard to get people.to write down everything they notice. » Thave no idea...But I think maybe remove the 6s, 3s, 1s, 8s
1. SMC outperforms MCMC N ; : to SMC perf e People often hypothesize based on one or a few examples, and share  (65s/13%)
deterministic DSL with noise on the output o perrormance i o
o o o0 these incorrect hypotheses rather than writing down the features
they’re sure of.
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;. Future Work
Human Study
0 v o Probabiistic  Deterministic _ Probabilisic _ Deterministi ihievel DSL Lowiovsl DSL _ AipfHevel DL LowiavelDSL e There’s a lot that people don’t write down - what can we do to better probe people’s
B M é’s“”mse oSt MCN[I’(S:“”“SG SMC MCMC intermediate hypotheses?
e (Can we model the effect of people attending to only a few examples when proposing?
| e More participants, and longer time limits
SMC: Accuracy vs Compute MCMC: Accuracy vs Compute ] ) ) ) :
100 - e (Quantitative analysis of relationship between our model and the human data
g 3 ” Computational Modelling
R R e Richer MCMC & SMC moves, including the MCMC moves from [Saad et al. 2023]
8 8 e Library learning to bootstrap from a low-level DSL as in [Ellis et al 2021, Bowers et al 2023]
== = 7 e Add domain: formal grammars from [Yang & Piantadosi 2022] where they similarly explore
0 0 probabilistic program hypotheses through MCMC, but also have edit-noise on the list outputs.
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e Add domain: world modelling domain like Autumn [Das et al 2023] or VGDL
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