
λxs. map (λx. if Flip(0.5) then dec(x) else inc(x)) xs

Maddy Bowers*,1, Alexander Lew*,1, Wenhao Qi2, Vikash Mansinghka1, Joshua Rule3,
Joshua Tenenbaum1, and Armando Solar-Lezama1

Concept Learning as Coarse-to-Fine
Probabilistic Program Induction

Abstract
● Program induction is an appealing model for human concept learning, but faces

scaling challenges in searching the massive space of programs.

● We propose a computational model capturing two key aspects of human concept
learning:

○ Our ability to judge how promising a vague, partial hypothesis is

○ Our ability to ability to gradually refine these coarse explanations of observations
to precise ones.

● We represent hypotheses as probabilistic programs with randomness in place of
unresolved programmatic structure. We guide a search process whereby
high-entropy, coarse programs are iteratively refined to introduce deterministic
structure.

● Preliminary synthesis results show improvements in sample efficiency through our
approach, and a preliminary human study explores how model intermediate
hypotheses compare to those of participants.

refine

λxs. map (λx. if Flip(0.5) then RandDigit() else inc(x)) xs

λxs. map (λx. if even(x) then dec(x) else inc(x)) xs

λxs. map (λx. RandDigit()) xs

The likelihood of the examples
under the program is a measure

of hypothesis quality

refine

refine

Input and output are the same
length, maybe some rule applies

to each element?

Oh, some of the outputs are
incremented…

And all the others are
decremented…

Ah! Evens are decremented
and odds are incremented

Input Output

[3,2,7,6] → [4,1,8,5]

[1,8,6,5,7] → [2,7,5,6,8]
λxs. RandList()

refine

SMC Search: Pruning & Guiding
How do we evaluate how good a

“coarse” hypothesis is?

Sequential Monte Carlo (SMC)

Pilot Design

P=5·10-13

P=2·10-12P=1·10-9P=0
λxs. map (λx. RandDigit()) xs)

λxs. RandList()

λxs. filter (λx. Flip(0.5)) xs λxs. cons RandDigit() RandList()

Higher likelihood:
More promising

Lower likelihood:
Less promising

(λxs. map (λx. (RandDigit)) xs)
[4,1,8,5] P=10-4xs = [3,2,7,6]

[2,7,5,6,8] P=10-5xs = [1,8,6,5,7]

RandList if (Flip 0.5) then [] else (Cons (RandDigit) RandList)=Zero likelihood:
impossible (can prune)

λxs. map (λx. if flip(0.5) then randomDigit() else inc(x)) xs

1MIT
2UCSD
3UC Berkeley

λxs. RandList()

λxs. map (λx. RandDigit()) xs

λxs. filter (λx. Flip(0.5)) xs

λxs. cons RandDigit() RandList()

X

P=1·10-9

P=2·10-12

P=0

… …

Preliminary Computational Results

Step 1: Participant has a limited
amount of time to observe
input-output examples.

Step 2: Participant records
observations they’ve noticed,
regardless of whether they figured out
the rule.

Step 3: Participant tries to guess the
outputs. If they are correct, they
move to the next round (with a new
rule). Otherwise they return to Step 1
with more time and the same rule.
Time limits: 4s, 8s, 16s, 32s, 64s, ∞.

Results:
● N=15 pilot

EXPT DESIGN
How do people refine their guesses with increasingly long intervals of time ot think about the
observations

Inputs -> outputs
True rule: first element is the index into the output

 Person 1 Person 2
4 seconds “i don't know”
8 seconds “some numbers”
16
32
64 aha!

Show variation in how long people have

Future work -- what more can we explore? Sometimes these hypotheses are wrong but close!

Input Output

[3,2,7,6] → [?,?,?,?]

[1,8,6,5,7] → [?,?,?,?,?]

Input Output

[3,2,7,6] → [4,?,8,?]

[1,8,6,5,7] → [2,?,?,?,?]

English explanation
of what program is
doing -- small italics

🤔��

��

How do we refine our initial
“coarse” hypotheses into
increasingly precise ones?

We model “coarse” hypotheses as probabilistic programs,
which are refined to gradually introduce deterministic structure

Task: What is the rule that
transforms the input lists

to output lists?
A list with geometrically distributed length
containing random digits

A map over the input list, sampling a
random digit for each element

A map over the input list, flipping a coin to
decide whether to sample a random digit or
increment the element

A map over the input list, flipping a coin to
decide whether to decrement or increment the
element

A map over the input list, decrementing evens
and incrementing odds

P = 5·10-13

P = 1·10-9

P = 6·10-4

P = 2·10-3

P = 1.0

…

… … … … …

Likelihood of examples
under hypothesis

Future Work

Coarse
hypothesis

Precise
hypothesis

This filter can only produce
subsets of the input list so it has
likelihood zero of producing the
output

Search details. We perform a sequential monte carlo (SMC) search over the space of
probabilistic programs. At each step, we refine a hypothesis by replacing some
stochastic leaf node with a depth 1 node sampled from PCFG grammar.

Why can we prune likelihood-zero programs? If a probabilistic program can never
produce the observed outputs, refining randomness into determinism in it will never
result in a program that can produce the outputs.

Why is a high likelihood program promising? A probabilistic program is an
explanation of how the data came to be. High likelihood programs have already
explained much of the data through their deterministic structure, minimizing the
amount that is explained as random chance.

Why P=10-9?
This program explains
each of the 9 output
digits as being a random
digit. A random digit has
1/10 chance to be the
observed value.

Why P=2·10-3?
This program flips a coin
9 times to produce the
output digits. A flip has
1/2 chance to result in
the observed value.
P= 2-9 = 2·10-3

Refinements

Pilot Results

● Dataset: First 80 tasks from list manipulation dataset of [Rule 2020; Rule et al 2024]
● SMC: 300 particles for 12 steps; MCMC: 7000 steps (similar amount of time)
● SMC moves: expand a random leaf to a depth one expression.
● MCMC moves: resample random subtree, similar to [Goodman et al. 2008]
● SMC outperforms MCMC, and in particular the probabilistic DSL benefits SMC greatly over using a

deterministic DSL that just has add-remove-modify noise on the output list.
● Working in a high level DSL (with map, filter, etc) is important to coarse-to-fine SMC working well

Human Study
● There’s a lot that people don’t write down – what can we do to better probe people’s

intermediate hypotheses?
● Can we model the effect of people attending to only a few examples when proposing?
● More participants, and longer time limits
● Quantitative analysis of relationship between our model and the human data

Computational Modelling
● Richer MCMC & SMC moves, including the MCMC moves from [Saad et al. 2023]
● Library learning to bootstrap from a low-level DSL as in [Ellis et al 2021, Bowers et al 2023]
● Add domain: formal grammars from [Yang & Piantadosi 2022] where they similarly explore

probabilistic program hypotheses through MCMC, but also have edit-noise on the list outputs.
● Add domain: world modelling domain like Autumn [Das et al 2023] or VGDL

● N=15 pilot
● Question: how do people refine their guesses when given increasingly long intervals of time to look at

the examples?
● Some coarse-to-fine reasoning
● Challenge: Attention effects – people often seem to hypothesize based on one or a few examples before

trying the hypothesis on all the data
● Challenge: People tend to say fine grained hypotheses they were going to try to verify next when they

got cut off, as opposed to saying coarse patterns that they’re sure of

SMC MCMC
SMC MCMC

1. SMC outperforms MCMC 2. Probabilistic DSL (full model) outperforms
 deterministic DSL with noise on the output

3. High-level DSL is particularly important
to SMC performance

Task: Return the 3rd element of the list

People often do this in a single step while our model model’s
trajectory:
1. RandList() # a random list
2. (cons RandDigit() []) # a random 1-element list
3. (cons (index RandDigit() xs) []) # index randomly into the list
4. (cons (index 3 xs) []) # 3rd element of the list

Person 1

Person 2

Person 3

Task: Increment odds and decrement evens Task: Use the first number in the list to index into the list

Task: Append length of list on to end of list

N=15 pilot to explore how people refine their guesses over time; some tasks adapted from [Rule 2020].
Example tasks and responses are given below.

Some challenges and observations:
● It’s hard to get people to write down everything they notice.
● People often hypothesize based on one or a few examples, and share

these incorrect hypotheses rather than writing down the features
they’re sure of.

2/5 people got this correct, and 2 others ended with noticing
that numbers were getting incremented/decremented but
were unsure why, as in the example below.

3/3 people got this correct, all within 16 seconds; if there is
coarse to fine reasoning it’s happening very fast

Our model’s trajectory:
1. RandList() # a random list
2. (cons RandDigit() []) # a random 1-element list
3. (cons (index RandDigit() xs) []) # index randomly into the list
4. (cons (index 3 xs) []) # 3rd element of the list

1/4 people got this correct, making it much harder than Return
3rd element of list, though our model takes a similar trajectory
to the other task.

Task: Remove 1, 3, 6, and 8 from the list

5/7 people got this correct, and 1 other person noticed “some
numbers are being removed”. People write many incorrect
observations along the way.

Person 1

Person 2

3/4 people got this correct, and 3/4 started by hypothesizing
that something is appended to the list, as does our model.

